Tag Archives: approximate counting

Applied Approximate Counting: Malaria

My first first-authored global health paper came out today (I consider it my first “first-authored” paper ever, since the mathematicians I’ve worked with deviantly list authorship in alphabetical order regardless of seniority and contribution). It’s a bit of a mouthful by title: Rapid Scaling Up of Insecticide-Treated Bed Net Coverage in Africa and Its Relationship with Development Assistance for Health: A Systematic Synthesis of Supply, Distribution, and Household Survey Data.

What I find really pleasing about this research paper is the way it continues research I worked on in graduate school, but in a completely different and unexpected direction. Approximate counting is something that my advisor specialized in, and he won a big award for the random polynomial time algorithm for approximating the volume of convex bodies. I followed in his footsteps when I was a student, and I’m still doing approximate counting, it’s just that now, instead of approximating the amount of high-dimensional sand that will fit in an oddly shaped high-dimensional box, I’ve been approximating the number of insecticide-treated bednets that have made it from manufacturers through the distribution supply-chain and into the households of malaria-endemic regions of the world. I’m even using the same technique, Markov-chain Monte Carlo.

I’ve been itching to write about the computational details of this research for a while, and now that the paper’s out, I will have my chance. But for today, I refer you to the PLoS Med paper, and the technical appendix, and the PyMC code on github.


Filed under global health, MCMC